

1.STATIC FRICTIONAL FORCE

The opposing force due to which there is no relative motion between the bodies in contact is called static friction force. It's a self-adjusting force.

Coefficient of static friction is us.

2.LIMITING FRICTIONAL FORCE

The maximum frictional force that acts when the body is about to move is called limiting frictional force.

3.KINETIC FRICTIONAL FORCE

The frictional force between the surfaces in contact when relative motion starts between them is called Kinetic Frictional Force. Coefficient of kinetic friction is uk.

Part II

FRICTION

MINIMUM FORCE REQUIRED TO MOVE THE BODY

$$F_{min} = \frac{\mu mg}{1 + \mu^2}$$

N = Normal force

FRICTION AS A COMPONENT OF CONTACT FORCE

$$F_{c max} = \sqrt{\mu^2 N^2 + N^2} \quad \{ :: f_{max} = \mu N \}$$

$$F_{c max} = N\sqrt{\mu^2 + 1}$$

MOTION ON A ROUGH INCLINED PLANE

Balancing Vertical Forces

Balancing Horizontal Forces

$$f = \mu N = \mu mg cos\theta$$

When sliding with acceleration 'a'

mg sin
$$\theta$$
 – μ mg cos θ = ma

ANGLE OF REPOSE

The angle of repose is the maximum angle that a surface can be tilted from the horizontal, such that an object on it is just able to stay on the surface without moving.

or
$$[\tan \theta_c = \mu]$$

where θ_c is called angle of repose.

